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Probabilistic Numerical Methods

http://probabilistic-numerics.org/
http://oates.work/samsi

Statistical Inference approaches to
numerical approximation and algorithm design



3 approaches to Numerical Approximation

3 approaches to inference and
to dealing with uncertainty



Game theory

John Von Neumann John Nash

J. Von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100(1):295–320,
1928

J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, Princeton, New Jersey, 1944.

N. Nash. Non-cooperative games. Ann. of Math., 54(2), 1951.
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Deterministic zero sum game

Player I’s payoff

How should I & II play the (repeated) game?



Player I

Player II
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II should play blue and lose 1 in the worst case

Worst case approach



Player I

Player II
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Worst case approach

I should play red and lose 2 in the worst case



Player I

Player II
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No saddle point
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Player II

Average case (Bayesian) approach
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Mixed strategy (repeated game) solution
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II should play red with probability 3/8 and win 1/8 on average

Player II



Mixed strategy (repeated game) solution
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I should play red with probability 3/8 and lose 1/8 on average

Player I



Game theory

John Von Neumann

Player I

Player II
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q 1− q

p

1− p

Optimal strategies 
are mixed strategies

Optimal way to
play is at random

Saddle point



The optimal mixed strategy is determined by the loss matrix

Player I
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p

1− p

Player II

II should play red with probability 3/10 and win 1/8 on average



Pioneering work

“ These concepts and techniques have attracted little attention 
among numerical analysts” (Larkin, 1972)

Bayesian/probabilistic approach not new but 
appears to have remained overlooked



Bayesian Numerical Analysis

P. Diaconis A. O’ Hagan J. E. H. Shaw



Information based complexity

H. Wozniakowski G. W. Wasilkowski J. F. Traub E. Novak



Compute

Numerical Analysis Approach
P. Diaconis



Compute

Bayesian Approach



E.g.



E.g.

E.g.



− div(a∇u) = g, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

ai,j ∈ L∞(Ω)
Ω ⊂ Rd ∂Ω is piec. Lip.

a unif. ell.

Approximate the solution space of (1)
with a finite dimensional space

Q



Numerical Homogenization Approach

HMM

Harmonic Coordinates Babuska, Caloz, Osborn, 1994
Allaire Brizzi 2005; Owhadi, Zhang 2005

Engquist, E, Abdulle, Runborg, Schwab, et Al. 2003-...

MsFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999]

Nolen, Papanicolaou, Pironneau, 2008

Flux norm Berlyand, Owhadi 2010; Symes 2012

Kozlov, 1979

[Fish - Wagiman, 1993]

Projection based method

Variational Multiscale Method, Orthogonal decomposition

Work hard to find good basis functions

Harmonic continuation



Bayesian Approach

Put a prior on g

Compute E u(x) finite no of observations

Proposition

− div(a∇u) = g, x ∈ Ω,
u = 0, x ∈ ∂Ω,



Replace g by ξ

ξ: White noise
Gaussian field with covariance function Λ(x, y) = δ(x− y)

⇔ ∀f ∈ L2(Ω),
R
Ω
f(x)ξ(x) dx is N

¡
0, kfk2L2(Ω)

¢

Bayesian approach



Theorem

Let
x1, . . . , xN ∈ Ω Ω

xN
xi

x1

a = Id

ai,j ∈ L∞(Ω)

[Harder-Desmarais, 1972]

[Duchon 1976, 1977,1978]

[Owhadi-Zhang-Berlyand 2013]



Theorem

Standard deviation of the statistical error 
bounds/controls the worst case error 



The Bayesian approach leads to old and new
quadrature rules.

Summary

Statistical errors seem to imply/control
deterministic worst case  errors

• Why does it work?
• How far can we push it?
• What are its limitations?
• How can we make sense of the process
of randomizing a known function?

Questions



L

u g

u and g live in infinite dimensional spaces

Direct computation is not possible

Given g find u

Given u find gDirect Problem

Inverse Problem



u

um gm

g

Inverse Problem

Reduced operator

∈ RmRm
Numerical implementation requires
computation with partial information.

um ∈ Rm u ∈ B1Missing information

φ1, . . . ,φm ∈ B∗1
um = ([φ1, u], . . . , [φm, u])

L



Multigrid Methods

Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]

Fast Solvers

Robust/Algebraic multigrid
[Mandel et al., 1999,Wan-Chan-Smith, 1999,
Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987]

[Panayot - 2010]

Stabilized Hierarchical bases, Multilevel preconditioners
[Vassilevski - Wang, 1997, 1998]

[Panayot - Vassilevski, 1997]

[Chow - Vassilevski, 2003]

[Aksoylu- Holst, 2010]

Low rank matrix decomposition methods
Fast Multipole Method: [Greengard and Rokhlin, 1987]

Hierarchical Matrix Method: [Hackbusch et al., 2002] [Bebendorf, 2008]:



Common theme between these methods 

Computation is done with partial information over 
hierarchies of levels of complexity

Restriction Interpolation

To compute fast we need to compute with partial information



The process of discovery of interpolation operators is 
based on intuition, brilliant insight, and guesswork

Missing information

Problem

This is one entry point for statistical  inference into
Numerical analysis and algorithm design



Φx = y
Based on the information that

Φ: Known m× n
rank m matrix (m < n)

y: Known element of Rm

A simple approximation problem



Worst case approach 
(Optimal Recovery)

Problem



Solution



Average case approach (IBC)

Problem



Solution



Player I Player II

Max Min

Adversarial game approach



Loss function

Player I

Player II

No saddle point of pure strategies



Player I Player II

Max Min

Randomized strategy for player I



Loss function

Saddle point



Canonical Gaussian field



Equilibrium saddle point

Player I

Player II



Statistical decision theory

Abraham Wald
A. Wald. Statistical decision functions which minimize the maximum risk. Ann.
of Math. (2), 46:265–280, 1945.

A. Wald. An essentially complete class of admissible decision functions. Ann.
Math. Statistics, 18:549–555, 1947.

A. Wald. Statistical decision functions. Ann. Math. Statistics, 20:165–205, 1949.



The game theoretic solution is equal to the worst case solution



Generalization



Examples

L



Canonical Gaussian field



Canonical Gaussian field



Canonical Gaussian field



Examples

L



The recovery problem at the core of Algorithm Design and Numerical Analysis 

Missing information

Problem

Restriction Interpolation

To compute fast we need to compute with partial information



Player I Player II

Max Min



Examples

Player I Player II

Player I Player II



Loss function

Player I

Player II

No saddle point of pure strategies



Player I Player II

Max Min

Randomized strategy for player I



Loss function

Theorem

But



Loss function

Theorem

Definition



Theorem



Theorem





Game theoretic solution = Worst case solution

Optimal Recovery Solution



Optimal bet of player II

Gamblets



Gamblets = Optimal Recovery Splines

Optimal Recovery Splines



Dual bases



Example

(
− div(a∇u) = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,



ψi
Your best bet on the value of u

given the information thatR
τi
u = 1 and

R
τj
u = 0 for j 6= i

ψi



Example



Example



Example

Ω

xi

x1

xm

φi(x) = δ(x− xi)

ψi: Polyharmonic splines
[Harder-Desmarais, 1972][Duchon 1976, 1977,1978]



Example

Ω

xi

x1

xm

φi(x) = δ(x− xi)

ψi: Rough Polyharmonic splines

[Owhadi-Zhang-Berlyand 2013]

ai,j ∈ L∞(Ω)



Example



Example



Summary

• Does the canonical Gaussian field remain  optimal  (or near optimal) 
beyond average    relative errors (e.g. rare events/large deviations ) or 
when measurements are not linear. This is a fundamental question if 
probabilistic numerical errors are to be merged with model errors in a 
unified Bayesian framework.

• What are the properties of gamblets?
• Can the game theoretic approach help us solve known open 

problems in numerical analysis and algorithm design?

Questions

• Bayesian numerical analysis ``works’’ because
Gaussian priors form the optimal class of priors when losses are 
defined using quadratic norms and measurements are linear
• The game theoretic solution is equal to the classical worst case 

optimal recovery solution under above questions
• The canonical Gaussian field contains all the required information

to bridge scales/levels of complexity in numerical approximation        
and it does not depend on the linear measurements.



Thank you

DARPA EQUiPS / AFOSR award no FA9550-16-1-0054
(Computational Information Games)


